V_TetMetric.cpp 52.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
/*=========================================================================

  Module:    V_TetMetric.cpp

  Copyright 2003,2006,2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
  Under the terms of Contract DE-NA0003525 with NTESS,
  the U.S. Government retains certain rights in this software.

  See LICENSE for details.

=========================================================================*/

/*
 *
 * TetMetric.cpp contains quality calculations for Tets
 *
 * This file is part of VERDICT
 *
 */

#include "V_GaussIntegration.hpp"
#include "VerdictVector.hpp"
#include "verdict.h"
#include "verdict_defines.hpp"

#include <algorithm>
#include <cmath> // for std::isnan

namespace VERDICT_NAMESPACE
{
static const double one_third = 1.0 / 3.0;
static const double two_thirds = 2.0 / 3.0;
static const double one_fourth = 1.0 / 4.0;
static const double four_ninths = 4.0 / 9.0;
static const double sqrt2 = std::sqrt(2.0);
static const double sqrt3 = std::sqrt(3.0);
static const double sqrt6 = std::sqrt(6.0);
static const double three_times_1plussqrt3 = 3.0 * (1 + sqrt3);
static const double normal_coeff = 180. * .3183098861837906715377675267450287;
static const double aspect_ratio_normal_coeff = sqrt6 / 12.;
double tet10_characteristic_length(const double coordinates[][3]);

static const int tet10_subtet_conn[12][4] = { { 0, 4, 6, 7 }, { 1, 5, 4, 8 }, { 2, 6, 5, 9 },
  { 3, 8, 7, 9 }, { 4, 8, 5, 10 }, { 5, 8, 9, 10 }, { 9, 8, 7, 10 }, { 7, 8, 4, 10 },
  { 4, 5, 6, 10 }, { 5, 9, 6, 10 }, { 9, 7, 6, 10 }, { 7, 4, 6, 10 } };

static double fix_range(double v)
{
  if (std::isnan(v))
  {
    return VERDICT_DBL_MAX;
  }
  if (v >= VERDICT_DBL_MAX)
  {
    return VERDICT_DBL_MAX;
  }
  if (v <= -VERDICT_DBL_MAX)
  {
    return -VERDICT_DBL_MAX;
  }
  return v;
}

double tet_equiangle_skew(int /*num_nodes*/, const double coordinates[][3])
{
  VerdictVector ab, ac, bc, bd, ad, cd;

  ab.set(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
    coordinates[1][2] - coordinates[0][2]);
  ab.normalize();

  ac.set(coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1],
    coordinates[2][2] - coordinates[0][2]);
  ac.normalize();

  ad.set(coordinates[3][0] - coordinates[0][0], coordinates[3][1] - coordinates[0][1],
    coordinates[3][2] - coordinates[0][2]);
  ad.normalize();

  bc.set(coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1],
    coordinates[2][2] - coordinates[1][2]);
  bc.normalize();

  bd.set(coordinates[3][0] - coordinates[1][0], coordinates[3][1] - coordinates[1][1],
    coordinates[3][2] - coordinates[1][2]);
  bd.normalize();

  cd.set(coordinates[3][0] - coordinates[2][0], coordinates[3][1] - coordinates[2][1],
    coordinates[3][2] - coordinates[2][2]);
  cd.normalize();

  VerdictVector abc = bc * ab;
  abc.normalize();
  VerdictVector abd = ab * ad;
  abd.normalize();
  VerdictVector acd = cd * ad;
  acd.normalize();
  VerdictVector bcd = bc * cd;
  bcd.normalize();

  double alpha = std::acos(-(abc % abd));
  double beta = std::acos(-(abc % acd));
  double gamma = std::acos(-(abc % bcd));
  double delta = std::acos(-(abd % acd));
  double epsilon = std::acos(-(abd % bcd));
  double zeta = std::acos(-(acd % bcd));

  double min_angle = alpha;
  min_angle = min_angle < beta ? min_angle : beta;
  min_angle = min_angle < gamma ? min_angle : gamma;
  min_angle = min_angle < delta ? min_angle : delta;
  min_angle = min_angle < epsilon ? min_angle : epsilon;
  min_angle = min_angle < zeta ? min_angle : zeta;
  min_angle *= normal_coeff;

  double max_angle = alpha;
  max_angle = max_angle > beta ? max_angle : beta;
  max_angle = max_angle > gamma ? max_angle : gamma;
  max_angle = max_angle > delta ? max_angle : delta;
  max_angle = max_angle > epsilon ? max_angle : epsilon;
  max_angle = max_angle > zeta ? max_angle : zeta;
  max_angle *= normal_coeff;

  double theta = std::acos(1 / 3.0) * normal_coeff; // 70.528779365509308630754000660038;

  double dihedral_skew_max = (max_angle - theta) / (180 - theta);
  double dihedral_skew_min = (theta - min_angle) / theta;

  min_angle = 360.0;
  max_angle = 0.0;

  double angles[12];
  angles[0] = std::acos(-(ab % bc));
  angles[1] = std::acos((bc % ac));
  angles[2] = std::acos((ac % ab));
  angles[3] = std::acos(-(ab % bd));
  angles[4] = std::acos((bd % ad));
  angles[5] = std::acos((ad % ab));
  angles[6] = std::acos(-(bc % cd));
  angles[7] = std::acos((cd % bd));
  angles[8] = std::acos((bd % bc));
  angles[9] = std::acos((ad % cd));
  angles[10] = std::acos(-(cd % ac));
  angles[11] = std::acos((ac % ad));

  for (int a = 0; a < 12; a++)
  {
    if (angles[a] < min_angle)
    {
      min_angle = angles[a];
    }
    if (angles[a] > max_angle)
    {
      max_angle = angles[a];
    }
  }
  max_angle *= normal_coeff;
  min_angle *= normal_coeff;
  double skew_max = (max_angle - 60.0) / 120.0;
  double skew_min = (60.0 - min_angle) / 60.0;

  double max_skew = dihedral_skew_min;
  max_skew = max_skew > dihedral_skew_max ? max_skew : dihedral_skew_max;
  max_skew = max_skew > skew_min ? max_skew : skew_min;
  max_skew = max_skew > skew_max ? max_skew : skew_max;

  return max_skew;
}

/*!
  get the weights based on the average size
  of a tet
 */
static int tet_get_weight(
  VerdictVector& w1, VerdictVector& w2, VerdictVector& w3, double average_tet_volume)
{
  w1.set(1, 0, 0);
  w2.set(0.5, 0.5 * sqrt3, 0);
  w3.set(0.5, sqrt3 / 6.0, sqrt2 / sqrt3);

  double scale = std::pow(6. * average_tet_volume / determinant(w1, w2, w3), 0.3333333333333);

  w1 *= scale;
  w2 *= scale;
  w3 *= scale;

  return 1;
}

/*!
   the edge ratio of a tet

   NB (P. Pebay 01/22/07):
     Hmax / Hmin where Hmax and Hmin are respectively the maximum and the
     minimum edge lengths
 */
double tet_edge_ratio(int /*num_nodes*/, const double coordinates[][3])
{
  VerdictVector a, b, c, d, e, f;

  a.set(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
    coordinates[1][2] - coordinates[0][2]);

  b.set(coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1],
    coordinates[2][2] - coordinates[1][2]);

  c.set(coordinates[0][0] - coordinates[2][0], coordinates[0][1] - coordinates[2][1],
    coordinates[0][2] - coordinates[2][2]);

  d.set(coordinates[3][0] - coordinates[0][0], coordinates[3][1] - coordinates[0][1],
    coordinates[3][2] - coordinates[0][2]);

  e.set(coordinates[3][0] - coordinates[1][0], coordinates[3][1] - coordinates[1][1],
    coordinates[3][2] - coordinates[1][2]);

  f.set(coordinates[3][0] - coordinates[2][0], coordinates[3][1] - coordinates[2][1],
    coordinates[3][2] - coordinates[2][2]);

  double a2 = a.length_squared();
  double b2 = b.length_squared();
  double c2 = c.length_squared();
  double d2 = d.length_squared();
  double e2 = e.length_squared();
  double f2 = f.length_squared();

  double m2, M2, mab, mcd, mef, Mab, Mcd, Mef;

  if (a2 < b2)
  {
    mab = a2;
    Mab = b2;
  }
  else // b2 <= a2
  {
    mab = b2;
    Mab = a2;
  }
  if (c2 < d2)
  {
    mcd = c2;
    Mcd = d2;
  }
  else // d2 <= c2
  {
    mcd = d2;
    Mcd = c2;
  }
  if (e2 < f2)
  {
    mef = e2;
    Mef = f2;
  }
  else // f2 <= e2
  {
    mef = f2;
    Mef = e2;
  }

  m2 = mab < mcd ? mab : mcd;
  m2 = m2 < mef ? m2 : mef;

  if (m2 < VERDICT_DBL_MIN)
  {
    return (double)VERDICT_DBL_MAX;
  }

  M2 = Mab > Mcd ? Mab : Mcd;
  M2 = M2 > Mef ? M2 : Mef;

  const double edge_ratio = std::sqrt(M2 / m2);

  return fix_range(edge_ratio);
}

/*!
  the scaled jacobian of a tet

  minimum of the jacobian divided by the lengths of 3 edge vectors

 */
double tet_scaled_jacobian(int /*num_nodes*/, const double coordinates[][3])
{
  const VerdictVector side0(coordinates[1][0] - coordinates[0][0],
    coordinates[1][1] - coordinates[0][1], coordinates[1][2] - coordinates[0][2]);
  const VerdictVector side1(coordinates[2][0] - coordinates[1][0],
    coordinates[2][1] - coordinates[1][1], coordinates[2][2] - coordinates[1][2]);
  const VerdictVector side2(coordinates[0][0] - coordinates[2][0],
    coordinates[0][1] - coordinates[2][1], coordinates[0][2] - coordinates[2][2]);
  const VerdictVector side3(coordinates[3][0] - coordinates[0][0],
    coordinates[3][1] - coordinates[0][1], coordinates[3][2] - coordinates[0][2]);
  const VerdictVector side4(coordinates[3][0] - coordinates[1][0],
    coordinates[3][1] - coordinates[1][1], coordinates[3][2] - coordinates[1][2]);
  const VerdictVector side5(coordinates[3][0] - coordinates[2][0],
    coordinates[3][1] - coordinates[2][1], coordinates[3][2] - coordinates[2][2]);

  const double jacobi = side3 % (side2 * side0);

  // products of lengths squared of each edge attached to a node.
  const double side0_length_squared = side0.length_squared();
  const double side1_length_squared = side1.length_squared();
  const double side2_length_squared = side2.length_squared();
  const double side3_length_squared = side3.length_squared();
  const double side4_length_squared = side4.length_squared();
  const double side5_length_squared = side5.length_squared();

  const double length_squared[4] = { side0_length_squared * side2_length_squared *
      side3_length_squared,
    side0_length_squared * side1_length_squared * side4_length_squared,
    side1_length_squared * side2_length_squared * side5_length_squared,
    side3_length_squared * side4_length_squared * side5_length_squared };
  int which_node = 0;
  if (length_squared[1] > length_squared[which_node])
  {
    which_node = 1;
  }
  if (length_squared[2] > length_squared[which_node])
  {
    which_node = 2;
  }
  if (length_squared[3] > length_squared[which_node])
  {
    which_node = 3;
  }

  double length_product = std::sqrt(length_squared[which_node]);
  if (length_product < std::abs(jacobi))
  {
    length_product = std::abs(jacobi);
  }

  if (length_product < VERDICT_DBL_MIN)
  {
    return (double)VERDICT_DBL_MAX;
  }

  return (double)(sqrt2 * jacobi / length_product);
}

/*!
  The radius ratio of a tet

  NB (P. Pebay 04/16/07):
    CR / (3.0 * IR) where CR is the circumsphere radius and IR is the inscribed
    sphere radius.
    Note that this function is similar to the aspect beta of a tet, except that
    it does not return VERDICT_DBL_MAX if the element has negative orientation.
 */
double tet_radius_ratio(int /*num_nodes*/, const double coordinates[][3])
{

  // Determine side vectors
  VerdictVector side[6];

  side[0].set(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
    coordinates[1][2] - coordinates[0][2]);

  side[1].set(coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1],
    coordinates[2][2] - coordinates[1][2]);

  side[2].set(coordinates[0][0] - coordinates[2][0], coordinates[0][1] - coordinates[2][1],
    coordinates[0][2] - coordinates[2][2]);

  side[3].set(coordinates[3][0] - coordinates[0][0], coordinates[3][1] - coordinates[0][1],
    coordinates[3][2] - coordinates[0][2]);

  side[4].set(coordinates[3][0] - coordinates[1][0], coordinates[3][1] - coordinates[1][1],
    coordinates[3][2] - coordinates[1][2]);

  side[5].set(coordinates[3][0] - coordinates[2][0], coordinates[3][1] - coordinates[2][1],
    coordinates[3][2] - coordinates[2][2]);

  VerdictVector numerator = side[3].length_squared() * (side[2] * side[0]) +
    side[2].length_squared() * (side[3] * side[0]) + side[0].length_squared() * (side[3] * side[2]);

  double area_sum;
  area_sum = ((side[2] * side[0]).length() + (side[3] * side[0]).length() +
               (side[4] * side[1]).length() + (side[3] * side[2]).length()) *
    0.5;

  double volume = tet_volume(4, coordinates);

  if (std::abs(volume) < VERDICT_DBL_MIN)
  {
    return (double)VERDICT_DBL_MAX;
  }
  else
  {
    const double radius_ratio = numerator.length() * area_sum / (108 * volume * volume);
    return fix_range(radius_ratio);
  }
}

/*!
  The aspect ratio of a tet

  NB (P. Pebay 01/22/07):
    Hmax / (2 sqrt(6) r) where Hmax and r respectively denote the greatest edge
    length and the inradius of the tetrahedron
  NB (J. Pouderoux 01/27/15)
    This will return VERDICT_DBL_MAX when the volume of the tetrahedron is ill-
    conditioned. Previously, this would only happen when the volume was small
    and positive, but now ill-conditioned inverted tetrahedra are also included.
 */
double tet_aspect_ratio(int /*num_nodes*/, const double coordinates[][3])
{
  // Determine side vectors
  VerdictVector ab, bc, ac, ad, bd, cd;

  ab.set(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
    coordinates[1][2] - coordinates[0][2]);

  ac.set(coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1],
    coordinates[2][2] - coordinates[0][2]);

  ad.set(coordinates[3][0] - coordinates[0][0], coordinates[3][1] - coordinates[0][1],
    coordinates[3][2] - coordinates[0][2]);

  double detTet = ab % (ac * ad);

  if (std::abs(detTet) < VERDICT_DBL_MIN)
  {
    return (double)VERDICT_DBL_MAX;
  }

  bc.set(coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1],
    coordinates[2][2] - coordinates[1][2]);

  bd.set(coordinates[3][0] - coordinates[1][0], coordinates[3][1] - coordinates[1][1],
    coordinates[3][2] - coordinates[1][2]);

  cd.set(coordinates[3][0] - coordinates[2][0], coordinates[3][1] - coordinates[2][1],
    coordinates[3][2] - coordinates[2][2]);

  double ab2 = ab.length_squared();
  double bc2 = bc.length_squared();
  double ac2 = ac.length_squared();
  double ad2 = ad.length_squared();
  double bd2 = bd.length_squared();
  double cd2 = cd.length_squared();

  double A = ab2 > bc2 ? ab2 : bc2;
  double B = ac2 > ad2 ? ac2 : ad2;
  double C = bd2 > cd2 ? bd2 : cd2;
  double D = A > B ? A : B;
  double hm = D > C ? std::sqrt(D) : std::sqrt(C);

  bd = ab * bc;
  A = bd.length();
  bd = ab * ad;
  B = bd.length();
  bd = ac * ad;
  C = bd.length();
  bd = bc * cd;
  D = bd.length();

  const double aspect_ratio = aspect_ratio_normal_coeff * hm * (A + B + C + D) / std::abs(detTet);

  return fix_range(aspect_ratio);
}

/*!
  the aspect gamma of a tet

  srms^3 / (8.48528137423857*V) where srms = sqrt(sum(Si^2)/6), where Si is the edge length
 */
double tet_aspect_gamma(int /*num_nodes*/, const double coordinates[][3])
{
  // Determine side vectors
  VerdictVector side0, side1, side2, side3, side4, side5;

  side0.set(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
    coordinates[1][2] - coordinates[0][2]);

  side1.set(coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1],
    coordinates[2][2] - coordinates[1][2]);

  side2.set(coordinates[0][0] - coordinates[2][0], coordinates[0][1] - coordinates[2][1],
    coordinates[0][2] - coordinates[2][2]);

  side3.set(coordinates[3][0] - coordinates[0][0], coordinates[3][1] - coordinates[0][1],
    coordinates[3][2] - coordinates[0][2]);

  side4.set(coordinates[3][0] - coordinates[1][0], coordinates[3][1] - coordinates[1][1],
    coordinates[3][2] - coordinates[1][2]);

  side5.set(coordinates[3][0] - coordinates[2][0], coordinates[3][1] - coordinates[2][1],
    coordinates[3][2] - coordinates[2][2]);

  double volume = std::abs(tet_volume(4, coordinates));

  if (volume < VERDICT_DBL_MIN)
  {
    return (double)VERDICT_DBL_MAX;
  }
  else
  {
    double srms =
      std::sqrt((side0.length_squared() + side1.length_squared() + side2.length_squared() +
                  side3.length_squared() + side4.length_squared() + side5.length_squared()) /
        6.0);

    double aspect_ratio_gamma = std::pow(srms, 3) / (8.48528137423857 * volume);
    return (double)aspect_ratio_gamma;
  }
}

/*!
  The aspect frobenius of a tet

  NB (P. Pebay 01/22/07):
    Frobenius condition number when the reference element is regular
 */
double tet_aspect_frobenius(int /*num_nodes*/, const double coordinates[][3])
{
  VerdictVector ab, ac, ad;

  ab.set(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
    coordinates[1][2] - coordinates[0][2]);

  ac.set(coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1],
    coordinates[2][2] - coordinates[0][2]);

  ad.set(coordinates[3][0] - coordinates[0][0], coordinates[3][1] - coordinates[0][1],
    coordinates[3][2] - coordinates[0][2]);

  double denominator = ab % (ac * ad);
  denominator *= denominator;
  denominator *= 2.;
  denominator = 3. * std::pow(denominator, one_third);

  if (denominator < VERDICT_DBL_MIN)
  {
    return (double)VERDICT_DBL_MAX;
  }

  double u[3];
  ab.get_xyz(u);
  double v[3];
  ac.get_xyz(v);
  double w[3];
  ad.get_xyz(w);

  double numerator = u[0] * u[0] + u[1] * u[1] + u[2] * u[2];
  numerator += v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
  numerator += w[0] * w[0] + w[1] * w[1] + w[2] * w[2];
  numerator *= 1.5;
  numerator -= v[0] * u[0] + v[1] * u[1] + v[2] * u[2];
  numerator -= w[0] * u[0] + w[1] * u[1] + w[2] * u[2];
  numerator -= w[0] * v[0] + w[1] * v[1] + w[2] * v[2];

  double aspect_frobenius = numerator / denominator;

  return fix_range(aspect_frobenius);
}

/*!
  The minimum angle of a tet

  NB (P. Pebay 01/22/07):
    minimum nonoriented dihedral angle
 */
double tet_minimum_angle(int /*num_nodes*/, const double coordinates[][3])
{
  // Determine side vectors
  VerdictVector ab, bc, ad, cd;

  ab.set(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
    coordinates[1][2] - coordinates[0][2]);

  ad.set(coordinates[3][0] - coordinates[0][0], coordinates[3][1] - coordinates[0][1],
    coordinates[3][2] - coordinates[0][2]);

  bc.set(coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1],
    coordinates[2][2] - coordinates[1][2]);

  cd.set(coordinates[3][0] - coordinates[2][0], coordinates[3][1] - coordinates[2][1],
    coordinates[3][2] - coordinates[2][2]);

  VerdictVector abc = ab * bc;
  double nabc = abc.length();
  VerdictVector abd = ab * ad;
  double nabd = abd.length();
  VerdictVector acd = ad * cd;
  double nacd = acd.length();
  VerdictVector bcd = bc * cd;
  double nbcd = bcd.length();

  double alpha = std::acos((abc % abd) / (nabc * nabd));
  double beta = std::acos((abc % acd) / (nabc * nacd));
  double gamma = std::acos((abc % bcd) / (nabc * nbcd));
  double delta = std::acos((abd % acd) / (nabd * nacd));
  double epsilon = std::acos((abd % bcd) / (nabd * nbcd));
  double zeta = std::acos((acd % bcd) / (nacd * nbcd));

  alpha = alpha < beta ? alpha : beta;
  alpha = alpha < gamma ? alpha : gamma;
  alpha = alpha < delta ? alpha : delta;
  alpha = alpha < epsilon ? alpha : epsilon;
  alpha = alpha < zeta ? alpha : zeta;
  alpha *= normal_coeff;

  return fix_range(alpha);
}

/*!
  The collapse ratio of a tet

  NB (J. Pouderoux 01/27/15)
    This will return VERDICT_DBL_MAX when the volume of the tetrahedron is ill-
    conditioned. Previously, this would only happen when the volume was small
    and positive, but now ill-conditioned inverted tetrahedra are also included.
 */
double tet_collapse_ratio(int /*num_nodes*/, const double coordinates[][3])
{
  // Determine side vectors
  VerdictVector e01, e02, e03, e12, e13, e23;

  e01.set(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
    coordinates[1][2] - coordinates[0][2]);

  e02.set(coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1],
    coordinates[2][2] - coordinates[0][2]);

  e03.set(coordinates[3][0] - coordinates[0][0], coordinates[3][1] - coordinates[0][1],
    coordinates[3][2] - coordinates[0][2]);

  e12.set(coordinates[2][0] - coordinates[1][0], coordinates[2][1] - coordinates[1][1],
    coordinates[2][2] - coordinates[1][2]);

  e13.set(coordinates[3][0] - coordinates[1][0], coordinates[3][1] - coordinates[1][1],
    coordinates[3][2] - coordinates[1][2]);

  e23.set(coordinates[3][0] - coordinates[2][0], coordinates[3][1] - coordinates[2][1],
    coordinates[3][2] - coordinates[2][2]);

  double l[6];
  l[0] = e01.length();
  l[1] = e02.length();
  l[2] = e03.length();
  l[3] = e12.length();
  l[4] = e13.length();
  l[5] = e23.length();

  // Find longest edge for each bounding triangle of tetrahedron
  double l012 = l[4] > l[0] ? l[4] : l[0];
  l012 = l[1] > l012 ? l[1] : l012;
  double l031 = l[0] > l[2] ? l[0] : l[2];
  l031 = l[3] > l031 ? l[3] : l031;
  double l023 = l[2] > l[1] ? l[2] : l[1];
  l023 = l[5] > l023 ? l[5] : l023;
  double l132 = l[4] > l[3] ? l[4] : l[3];
  l132 = l[5] > l132 ? l[5] : l132;

  // Compute collapse ratio for each vertex/triangle pair
  VerdictVector N;
  double h, magN;
  double cr;
  double crMin;

  N = e01 * e02;
  magN = N.length();
  h = (e03 % N) / magN; // height of vertex 3 above 0-1-2
  crMin = h / l012;     // ratio of height to longest edge of 0-1-2

  N = e03 * e01;
  magN = N.length();
  h = (e02 % N) / magN; // height of vertex 2 above 0-3-1
  cr = h / l031;        // ratio of height to longest edge of 0-3-1
  if (cr < crMin)
  {
    crMin = cr;
  }

  N = e02 * e03;
  magN = N.length();
  h = (e01 % N) / magN; // height of vertex 1 above 0-2-3
  cr = h / l023;        // ratio of height to longest edge of 0-2-3
  if (cr < crMin)
  {
    crMin = cr;
  }

  N = e12 * e13;
  magN = N.length();
  h = (e01 % N) / magN; // height of vertex 0 above 1-3-2
  cr = h / l132;        // ratio of height to longest edge of 1-3-2
  if (cr < crMin)
  {
    crMin = cr;
  }

  return fix_range(crMin);
}

double tet_equivolume_skew(int num_nodes, const double coordinates[][3])
{
  //- Find the vectors from the origin to each of the nodes on the tet.
  VerdictVector vectA(coordinates[0][0], coordinates[0][1], coordinates[0][2]);
  VerdictVector vectB(coordinates[1][0], coordinates[1][1], coordinates[1][2]);
  VerdictVector vectC(coordinates[2][0], coordinates[2][1], coordinates[2][2]);
  VerdictVector vectD(coordinates[3][0], coordinates[3][1], coordinates[3][2]);

  VerdictVector vectAB = vectB - vectA;
  VerdictVector vectAC = vectC - vectA;
  VerdictVector vectAD = vectD - vectA;

  double sq_lengthAB = vectAB.length_squared();
  double sq_lengthAC = vectAC.length_squared();
  double sq_lengthAD = vectAD.length_squared();

  VerdictVector cpBC = vectAB * vectAC;
  VerdictVector cpDB = vectAD * vectAB;
  VerdictVector cpCD = vectAC * vectAD;

  VerdictVector num = sq_lengthAD * cpBC + sq_lengthAC * cpDB + sq_lengthAB * cpCD;
  double den = 2 * vectAB % cpCD;

  double circumradius = num.length() / den;

  double volume = tet_volume(num_nodes, coordinates);
  double optimal_length = circumradius / std::sqrt(double(3.0) / 8.0);
  double optimal_volume = (1.0 / 12.0) * std::sqrt(double(2.0)) * std::pow(optimal_length, 3);

  const double eq_v_skew = (optimal_volume - volume) / optimal_volume;
  return fix_range(eq_v_skew);
}

double tet_squish_index(int /*num_nodes*/, const double coordinates[][3])
{
  VerdictVector vectA(coordinates[0][0], coordinates[0][1], coordinates[0][2]);
  VerdictVector vectB(coordinates[1][0], coordinates[1][1], coordinates[1][2]);
  VerdictVector vectC(coordinates[2][0], coordinates[2][1], coordinates[2][2]);
  VerdictVector vectD(coordinates[3][0], coordinates[3][1], coordinates[3][2]);

  VerdictVector tetCenter = vectA + vectB + vectC + vectD;
  tetCenter /= 4.0;

  /*                  top view

                          C
                         /|\
                        / 5 \
                     2 /  D  \ 1
                      / 3/ \4 \
                     /_/     \_\
                    A-----------B
                          0
  */

  VerdictVector side[6];

  side[0].set(vectA, vectB);
  side[1].set(vectB, vectC);
  side[2].set(vectC, vectA);
  side[3].set(vectA, vectD);
  side[4].set(vectB, vectD);
  side[5].set(vectC, vectD);

  double maxSquishIndex = 0;
  double squishIndex = 0;
  VerdictVector faceCenter;
  VerdictVector centerCenterVector;
  VerdictVector faceAreaVector;

  // face 1
  faceCenter = (vectA + vectB + vectD) / 3.0;
  centerCenterVector = faceCenter - tetCenter;
  faceAreaVector = 0.5 * (side[0] * side[4]);

  squishIndex = 1 -
    (faceAreaVector % centerCenterVector) / (faceAreaVector.length() * centerCenterVector.length());
  if (squishIndex > maxSquishIndex)
  {
    maxSquishIndex = squishIndex;
  }

  // face 2
  faceCenter = (vectB + vectC + vectD) / 3.0;
  centerCenterVector = faceCenter - tetCenter;
  faceAreaVector = 0.5 * (side[1] * side[5]);

  squishIndex = 1 -
    (faceAreaVector % centerCenterVector) / (faceAreaVector.length() * centerCenterVector.length());
  if (squishIndex > maxSquishIndex)
  {
    maxSquishIndex = squishIndex;
  }

  // face 3
  faceCenter = (vectA + vectC + vectD) / 3.0;
  centerCenterVector = faceCenter - tetCenter;
  faceAreaVector = 0.5 * (side[2] * side[3]);

  squishIndex = 1 -
    (faceAreaVector % centerCenterVector) / (faceAreaVector.length() * centerCenterVector.length());
  if (squishIndex > maxSquishIndex)
  {
    maxSquishIndex = squishIndex;
  }

  // face 4
  faceCenter = (vectA + vectB + vectC) / 3.0;
  centerCenterVector = faceCenter - tetCenter;
  faceAreaVector = 0.5 * (side[1] * side[0]);

  squishIndex = 1 -
    (faceAreaVector % centerCenterVector) / (faceAreaVector.length() * centerCenterVector.length());
  if (squishIndex > maxSquishIndex)
  {
    maxSquishIndex = squishIndex;
  }
  return maxSquishIndex;
}

static const double TET15_node_local_coord[15][3] = { { 0, 0, 0 }, { 1.0, 0, 0 }, { 0, 1.0, 0 },
  { 0, 0, 1.0 }, { .5, 0, 0 }, { .5, .5, 0 }, { 0, .5, 0 }, { 0, 0, .5 }, { .5, 0, .5 },
  { 0, .5, .5 }, { one_third, one_third, 0 }, { one_third, 0, one_third },
  { one_third, one_third, one_third }, { 0, one_third, one_third },
  { one_fourth, one_fourth, one_fourth } };

static void TET15_gradients_of_the_shape_functions_for_R_S_T(
  const double rst[3], double dhdr[15], double dhds[15], double dhdt[15])
{
  // dh/dr;
  dhdr[0] = -1.0;
  dhdr[1] = 1.0;
  dhdr[2] = 0.0;
  dhdr[3] = 0.0;
  dhdr[4] = 4.0 * (1.0 - 2.0 * rst[0] - rst[1] - rst[2]);
  dhdr[5] = 4.0 * rst[1];
  dhdr[6] = -4.0 * rst[1];
  dhdr[7] = -4.0 * rst[2];
  dhdr[8] = 4.0 * rst[2];
  dhdr[9] = 0.0;
  dhdr[11] = 27.0 * (rst[1] - 2.0 * rst[0] * rst[1] - rst[1] * rst[1] - rst[1] * rst[2]);
  dhdr[14] = 27.0 * (rst[2] - 2.0 * rst[0] * rst[2] - rst[1] * rst[2] - rst[2] * rst[2]);
  dhdr[12] = 27.0 * rst[1] * rst[2];
  dhdr[13] = -27.0 * rst[1] * rst[2];
  dhdr[10] = 256.0 *
    (rst[1] * rst[2] - 2.0 * rst[0] * rst[1] * rst[2] - rst[1] * rst[1] * rst[2] -
      rst[1] * rst[2] * rst[2]);

  // dh/ds;
  dhds[0] = -1.0;
  dhds[1] = 0.0;
  dhds[2] = 1.0;
  dhds[3] = 0.0;
  dhds[4] = -4.0 * rst[0];
  dhds[5] = 4.0 * rst[0];
  dhds[6] = 4.0 * (1.0 - rst[0] - 2.0 * rst[1] - rst[2]);
  dhds[7] = -4.0 * rst[2];
  dhds[8] = 0.0;
  dhds[9] = 4.0 * rst[2];
  dhds[11] = 27.0 * (rst[0] - rst[0] * rst[0] - 2.0 * rst[0] * rst[1] - rst[0] * rst[2]);
  dhds[14] = -27.0 * rst[0] * rst[2];
  dhds[12] = 27.0 * rst[0] * rst[2];
  dhds[13] = 27.0 * (rst[2] - rst[0] * rst[2] - 2.0 * rst[1] * rst[2] - rst[2] * rst[2]);
  dhds[10] = 256.0 *
    (rst[0] * rst[2] - rst[0] * rst[0] * rst[2] - 2.0 * rst[0] * rst[1] * rst[2] -
      rst[0] * rst[2] * rst[2]);

  // dh/dt;
  dhdt[0] = -1.0;
  dhdt[1] = 0.0;
  dhdt[2] = 0.0;
  dhdt[3] = 1.0;
  dhdt[4] = -4.0 * rst[0];
  dhdt[5] = 0.0;
  dhdt[6] = -4.0 * rst[1];
  dhdt[7] = 4.0 * (1.0 - rst[0] - rst[1] - 2.0 * rst[2]);
  dhdt[8] = 4.0 * rst[0];
  dhdt[9] = 4.0 * rst[1];
  dhdt[11] = -27.0 * rst[0] * rst[1];
  dhdt[14] = 27.0 * (rst[0] - rst[0] * rst[0] - rst[0] * rst[1] - 2.0 * rst[0] * rst[2]);
  dhdt[12] = 27.0 * rst[0] * rst[1];
  dhdt[13] = 27.0 * (rst[1] - rst[0] * rst[1] - rst[1] * rst[1] - 2.0 * rst[1] * rst[2]);
  dhdt[10] = 256.0 *
    (rst[0] * rst[1] - rst[0] * rst[0] * rst[1] - rst[0] * rst[1] * rst[1] -
      2.0 * rst[0] * rst[1] * rst[2]);

  // ----------------------------------------------;
  // ADD CONTRIBUTIONS OF NODES 5-15 TO NODES 1-14;
  // ----------------------------------------------;

  // dh/dr;
  dhdr[11] = dhdr[11] - 108.0 * dhdr[10] / 256.0;
  dhdr[14] = dhdr[14] - 108.0 * dhdr[10] / 256.0;
  dhdr[12] = dhdr[12] - 108.0 * dhdr[10] / 256.0;
  dhdr[13] = dhdr[13] - 108.0 * dhdr[10] / 256.0;
  dhdr[4] = dhdr[4] - four_ninths * (dhdr[11] + dhdr[14]) - .25 * dhdr[10];
  dhdr[5] = dhdr[5] - four_ninths * (dhdr[11] + dhdr[12]) - .25 * dhdr[10];
  dhdr[6] = dhdr[6] - four_ninths * (dhdr[11] + dhdr[13]) - .25 * dhdr[10];
  dhdr[7] = dhdr[7] - four_ninths * (dhdr[14] + dhdr[13]) - .25 * dhdr[10];
  dhdr[8] = dhdr[8] - four_ninths * (dhdr[14] + dhdr[12]) - .25 * dhdr[10];
  dhdr[9] = dhdr[9] - four_ninths * (dhdr[12] + dhdr[13]) - .25 * dhdr[10];
  dhdr[0] = dhdr[0] - .5 * (dhdr[4] + dhdr[6] + dhdr[7]) -
    one_third * (dhdr[11] + dhdr[14] + dhdr[13]) - .25 * dhdr[10];
  dhdr[1] = dhdr[1] - .5 * (dhdr[4] + dhdr[5] + dhdr[8]) -
    one_third * (dhdr[11] + dhdr[14] + dhdr[12]) - .25 * dhdr[10];
  dhdr[2] = dhdr[2] - .5 * (dhdr[5] + dhdr[6] + dhdr[9]) -
    one_third * (dhdr[11] + dhdr[12] + dhdr[13]) - .25 * dhdr[10];
  dhdr[3] = dhdr[3] - .5 * (dhdr[7] + dhdr[8] + dhdr[9]) -
    one_third * (dhdr[14] + dhdr[12] + dhdr[13]) - .25 * dhdr[10];

  // dh/ds;
  dhds[11] = dhds[11] - 108.0 * dhds[10] / 256.0;
  dhds[14] = dhds[14] - 108.0 * dhds[10] / 256.0;
  dhds[12] = dhds[12] - 108.0 * dhds[10] / 256.0;
  dhds[13] = dhds[13] - 108.0 * dhds[10] / 256.0;
  dhds[4] = dhds[4] - four_ninths * (dhds[11] + dhds[14]) - .25 * dhds[10];
  dhds[5] = dhds[5] - four_ninths * (dhds[11] + dhds[12]) - .25 * dhds[10];
  dhds[6] = dhds[6] - four_ninths * (dhds[11] + dhds[13]) - .25 * dhds[10];
  dhds[7] = dhds[7] - four_ninths * (dhds[14] + dhds[13]) - .25 * dhds[10];
  dhds[8] = dhds[8] - four_ninths * (dhds[14] + dhds[12]) - .25 * dhds[10];
  dhds[9] = dhds[9] - four_ninths * (dhds[12] + dhds[13]) - .25 * dhds[10];
  dhds[0] = dhds[0] - .5 * (dhds[4] + dhds[6] + dhds[7]) -
    one_third * (dhds[11] + dhds[14] + dhds[13]) - .25 * dhds[10];
  dhds[1] = dhds[1] - .5 * (dhds[4] + dhds[5] + dhds[8]) -
    one_third * (dhds[11] + dhds[14] + dhds[12]) - .25 * dhds[10];
  dhds[2] = dhds[2] - .5 * (dhds[5] + dhds[6] + dhds[9]) -
    one_third * (dhds[11] + dhds[12] + dhds[13]) - .25 * dhds[10];
  dhds[3] = dhds[3] - .5 * (dhds[7] + dhds[8] + dhds[9]) -
    one_third * (dhds[14] + dhds[12] + dhds[13]) - .25 * dhds[10];

  // dh/dt;
  dhdt[11] = dhdt[11] - 108.0 * dhdt[10] / 256.0;
  dhdt[14] = dhdt[14] - 108.0 * dhdt[10] / 256.0;
  dhdt[12] = dhdt[12] - 108.0 * dhdt[10] / 256.0;
  dhdt[13] = dhdt[13] - 108.0 * dhdt[10] / 256.0;
  dhdt[4] = dhdt[4] - four_ninths * (dhdt[11] + dhdt[14]) - .25 * dhdt[10];
  dhdt[5] = dhdt[5] - four_ninths * (dhdt[11] + dhdt[12]) - .25 * dhdt[10];
  dhdt[6] = dhdt[6] - four_ninths * (dhdt[11] + dhdt[13]) - .25 * dhdt[10];
  dhdt[7] = dhdt[7] - four_ninths * (dhdt[14] + dhdt[13]) - .25 * dhdt[10];
  dhdt[8] = dhdt[8] - four_ninths * (dhdt[14] + dhdt[12]) - .25 * dhdt[10];
  dhdt[9] = dhdt[9] - four_ninths * (dhdt[12] + dhdt[13]) - .25 * dhdt[10];
  dhdt[0] = dhdt[0] - .5 * (dhdt[4] + dhdt[6] + dhdt[7]) -
    one_third * (dhdt[11] + dhdt[14] + dhdt[13]) - .25 * dhdt[10];
  dhdt[1] = dhdt[1] - .5 * (dhdt[4] + dhdt[5] + dhdt[8]) -
    one_third * (dhdt[11] + dhdt[14] + dhdt[12]) - .25 * dhdt[10];
  dhdt[2] = dhdt[2] - .5 * (dhdt[5] + dhdt[6] + dhdt[9]) -
    one_third * (dhdt[11] + dhdt[12] + dhdt[13]) - .25 * dhdt[10];
  dhdt[3] = dhdt[3] - .5 * (dhdt[7] + dhdt[8] + dhdt[9]) -
    one_third * (dhdt[14] + dhdt[12] + dhdt[13]) - .25 * dhdt[10];
}

double calculate_tet_volume_using_sides(
  const VerdictVector& side0, const VerdictVector& side2, const VerdictVector& side3)
{
  return (double)((side3 % (side2 * side0)) / 6.0);
}

/*!
  the volume of a tet

  1/6 * jacobian at a corner node
 */
double tet_volume(int num_nodes, const double coordinates[][3])
{
  // Determine side vectors
  VerdictVector side0, side2, side3;
  if (4 == num_nodes)
  {
    side2.set(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
      coordinates[1][2] - coordinates[0][2]);

    side0.set(coordinates[2][0] - coordinates[0][0], coordinates[2][1] - coordinates[0][1],
      coordinates[2][2] - coordinates[0][2]);

    side3.set(coordinates[3][0] - coordinates[0][0], coordinates[3][1] - coordinates[0][1],
      coordinates[3][2] - coordinates[0][2]);
    return calculate_tet_volume_using_sides(side0, side2, side3);
  }
  else
  {
    VerdictVector tet_pts[15];

    // create a vector for each point
    for (int k = 0; k < num_nodes; k++)
    {
      tet_pts[k].set(coordinates[k][0], coordinates[k][1], coordinates[k][2]);
    }

    // determine center point of the higher-order nodes
    VerdictVector centroid(0, 0, 0);
    for (int k = 4; k < num_nodes; k++)
    {
      centroid += VerdictVector(coordinates[k][0], coordinates[k][1], coordinates[k][2]);
    }
    centroid /= (num_nodes - 4);

    if (8 == num_nodes)
    {
      double tet_volume = 0;

      int tet_face_conn[4][4] = { { 0, 2, 1, 4 }, { 0, 1, 3, 7 }, { 1, 2, 3, 5 }, { 0, 3, 2, 6 } };

      for (int i = 0; i < 4; i++)
      {
        VerdictVector& node0 = tet_pts[tet_face_conn[i][0]];
        VerdictVector& node1 = tet_pts[tet_face_conn[i][1]];
        VerdictVector& node2 = tet_pts[tet_face_conn[i][2]];
        VerdictVector& node3 = tet_pts[tet_face_conn[i][3]];

        // 012
        side2 = node3 - node0;
        side0 = node1 - node0;
        side3 = centroid - node0;
        tet_volume += calculate_tet_volume_using_sides(side0, side2, side3);

        // 123
        side2 = node3 - node1;
        side0 = node2 - node1;
        side3 = centroid - node1;
        tet_volume += calculate_tet_volume_using_sides(side0, side2, side3);

        // 032
        side2 = node2 - node0;
        side0 = node3 - node0;
        side3 = centroid - node0;
        tet_volume += calculate_tet_volume_using_sides(side0, side2, side3);
      }

      return tet_volume;
    }
    if (10 == num_nodes)
    {
      double tet_volume = 0;

      int tet_face_conn[4][6] = { { 0, 2, 1, 6, 5, 4 }, { 0, 1, 3, 4, 8, 7 }, { 1, 2, 3, 5, 9, 8 },
        { 0, 3, 2, 7, 9, 6 } };

      for (int i = 0; i < 4; i++)
      {
        VerdictVector& node0 = tet_pts[tet_face_conn[i][0]];
        VerdictVector& node1 = tet_pts[tet_face_conn[i][1]];
        VerdictVector& node2 = tet_pts[tet_face_conn[i][2]];
        VerdictVector& node3 = tet_pts[tet_face_conn[i][3]];
        VerdictVector& node4 = tet_pts[tet_face_conn[i][4]];
        VerdictVector& node5 = tet_pts[tet_face_conn[i][5]];

        // 053
        side2 = node5 - node0;
        side0 = node3 - node0;
        side3 = centroid - node0;
        tet_volume += calculate_tet_volume_using_sides(side0, side2, side3);

        // 134
        side2 = node3 - node1;
        side0 = node4 - node1;
        side3 = centroid - node1;
        tet_volume += calculate_tet_volume_using_sides(side0, side2, side3);

        // 254
        side2 = node4 - node2;
        side0 = node5 - node2;
        side3 = centroid - node2;
        tet_volume += calculate_tet_volume_using_sides(side0, side2, side3);

        // 345
        side2 = node5 - node3;
        side0 = node4 - node3;
        side3 = centroid - node3;
        tet_volume += calculate_tet_volume_using_sides(side0, side2, side3);
      }

      return tet_volume;
    }
    if (num_nodes >= 14)
    {
      double tet_volume = 0;

      int tet_face_conn[4][7] = { { 0, 3, 2, 7, 9, 6, 12 }, { 0, 2, 1, 6, 5, 4, 10 },
        { 0, 1, 3, 4, 8, 7, 13 }, { 1, 2, 3, 5, 9, 8, 11 } };

      if (num_nodes == 15)
      {
        tet_face_conn[0][6]++;
        tet_face_conn[1][6]++;
        tet_face_conn[2][6]++;
        tet_face_conn[3][6]++;
      }

      for (int i = 0; i < 4; i++)
      {
        VerdictVector& node0 = tet_pts[tet_face_conn[i][0]];
        VerdictVector& node1 = tet_pts[tet_face_conn[i][1]];
        VerdictVector& node2 = tet_pts[tet_face_conn[i][2]];
        VerdictVector& node3 = tet_pts[tet_face_conn[i][3]];
        VerdictVector& node4 = tet_pts[tet_face_conn[i][4]];
        VerdictVector& node5 = tet_pts[tet_face_conn[i][5]];
        VerdictVector& node6 = tet_pts[tet_face_conn[i][6]];

        // 056
        side2 = node5 - node0;
        side0 = node6 - node0;
        side3 = centroid - node0;
        tet_volume += calculate_tet_volume_using_sides(side0, side2, side3);

        // 063
        side2 = node6 - node0;
        side0 = node3 - node0;
        side3 = centroid - node0;
        tet_volume += calculate_tet_volume_using_sides(side0, side2, side3);

        // 136
        side2 = node3 - node1;
        side0 = node6 - node1;
        side3 = centroid - node1;
        tet_volume += calculate_tet_volume_using_sides(side0, side2, side3);

        // 164
        side2 = node6 - node1;
        side0 = node4 - node1;
        side3 = centroid - node1;
        tet_volume += calculate_tet_volume_using_sides(side0, side2, side3);

        // 246
        side2 = node4 - node2;
        side0 = node6 - node2;
        side3 = centroid - node2;
        tet_volume += calculate_tet_volume_using_sides(side0, side2, side3);

        // 265
        side2 = node6 - node2;
        side0 = node5 - node2;
        side3 = centroid - node2;
        tet_volume += calculate_tet_volume_using_sides(side0, side2, side3);
      }

      return tet_volume;
    }
  }
  return 0;
}

/*!
  the condition of a tet

  condition number of the jacobian matrix at any corner

  NB (J. Pouderoux 01/27/15)
    This will return VERDICT_DBL_MAX when the volume of the tetrahedron is ill-
    conditioned. Previously, this would only happen when the volume was small
    and positive, but now ill-conditioned inverted tetrahedra are also included.
 */
double tet_condition(int /*num_nodes*/, const double coordinates[][3])
{
  double condition, term1, term2, det;

  VerdictVector side0, side2, side3;

  side0.set(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
    coordinates[1][2] - coordinates[0][2]);

  side2.set(coordinates[0][0] - coordinates[2][0], coordinates[0][1] - coordinates[2][1],
    coordinates[0][2] - coordinates[2][2]);

  side3.set(coordinates[3][0] - coordinates[0][0], coordinates[3][1] - coordinates[0][1],
    coordinates[3][2] - coordinates[0][2]);

  VerdictVector c_1, c_2, c_3;

  c_1 = side0;
  c_2 = (-2 * side2 - side0) / sqrt3;
  c_3 = (3 * side3 + side2 - side0) / sqrt6;

  term1 = c_1 % c_1 + c_2 % c_2 + c_3 % c_3;
  term2 = (c_1 * c_2) % (c_1 * c_2) + (c_2 * c_3) % (c_2 * c_3) + (c_1 * c_3) % (c_1 * c_3);
  det = c_1 % (c_2 * c_3);

  if (std::abs(det) <= VERDICT_DBL_MIN)
  {
    return VERDICT_DBL_MAX;
  }
  else
  {
    condition = std::sqrt(term1 * term2) / (3.0 * det);
  }

  return (double)condition;
}

/*!
  the jacobian of a tet

  TODO
 */
double tet_jacobian(int num_nodes, const double coordinates[][3])
{
  if (num_nodes == 15)
  {
    double dhdr[15];
    double dhds[15];
    double dhdt[15];
    double min_determinant = VERDICT_DBL_MAX;

    for (int i = 0; i < 15; i++)
    {
      TET15_gradients_of_the_shape_functions_for_R_S_T(TET15_node_local_coord[i], dhdr, dhds, dhdt);
      double jacobian[3][3] = { { 0, 0, 0 }, { 0, 0, 0 }, { 0, 0, 0 } };

      for (int j = 0; j < 15; j++)
      {
        jacobian[0][0] += coordinates[j][0] * dhdr[j];
        jacobian[0][1] += coordinates[j][0] * dhds[j];
        jacobian[0][2] += coordinates[j][0] * dhdt[j];
        jacobian[1][0] += coordinates[j][1] * dhdr[j];
        jacobian[1][1] += coordinates[j][1] * dhds[j];
        jacobian[1][2] += coordinates[j][1] * dhdt[j];
        jacobian[2][0] += coordinates[j][2] * dhdr[j];
        jacobian[2][1] += coordinates[j][2] * dhds[j];
        jacobian[2][2] += coordinates[j][2] * dhdt[j];
      }
      double det =
        (VerdictVector(jacobian[0]) * VerdictVector(jacobian[1])) % VerdictVector(jacobian[2]);
      min_determinant = std::min(det, min_determinant);
    }
    return min_determinant;
  }
  else
  {
    VerdictVector side0, side2, side3;

    side0.set(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
      coordinates[1][2] - coordinates[0][2]);

    side2.set(coordinates[0][0] - coordinates[2][0], coordinates[0][1] - coordinates[2][1],
      coordinates[0][2] - coordinates[2][2]);

    side3.set(coordinates[3][0] - coordinates[0][0], coordinates[3][1] - coordinates[0][1],
      coordinates[3][2] - coordinates[0][2]);

    return (double)(side3 % (side2 * side0));
  }
}

/*!
  the shape of a tet

  3/ condition number of weighted jacobian matrix
 */
double tet_shape(int /*num_nodes*/, const double coordinates[][3])
{
  VerdictVector edge0, edge2, edge3;

  edge0.set(coordinates[1][0] - coordinates[0][0], coordinates[1][1] - coordinates[0][1],
    coordinates[1][2] - coordinates[0][2]);

  edge2.set(coordinates[0][0] - coordinates[2][0], coordinates[0][1] - coordinates[2][1],
    coordinates[0][2] - coordinates[2][2]);

  edge3.set(coordinates[3][0] - coordinates[0][0], coordinates[3][1] - coordinates[0][1],
    coordinates[3][2] - coordinates[0][2]);

  double jacobian = edge3 % (edge2 * edge0);
  if (jacobian < VERDICT_DBL_MIN)
  {
    return (double)0.0;
  }
  double num = 3 * std::pow(sqrt2 * jacobian, two_thirds);
  double den = 1.5 * (edge0 % edge0 + edge2 % edge2 + edge3 % edge3) -
    (edge0 % -edge2 + -edge2 % edge3 + edge3 % edge0);

  if (den < VERDICT_DBL_MIN)
  {
    return (double)0.0;
  }

  double shape = num / den;
  if (shape < 0)
  {
    shape = 0;
  }
  return fix_range(shape);
}

/*!
  the relative size of a tet

  Min(J,1/J), where J is the determinant of the weighted Jacobian matrix
 */
double tet_relative_size_squared(
  int /*num_nodes*/, const double coordinates[][3], double average_tet_volume)
{
  double size;
  VerdictVector w1, w2, w3;
  tet_get_weight(w1, w2, w3, average_tet_volume);
  double avg_volume = (w1 % (w2 * w3)) / 6.0;

  double volume = tet_volume(4, coordinates);

  if (avg_volume < VERDICT_DBL_MIN)
  {
    return 0.0;
  }
  else
  {
    size = volume / avg_volume;
    if (size <= VERDICT_DBL_MIN)
    {
      return 0.0;
    }
    if (size > 1)
    {
      size = (double)(1) / size;
    }
  }
  return (double)(size * size);
}

/*!
  the shape and size of a tet

  Product of the shape and relative size
 */
double tet_shape_and_size(int num_nodes, const double coordinates[][3], double average_tet_volume)
{
  double shape, size;
  shape = tet_shape(num_nodes, coordinates);
  size = tet_relative_size_squared(num_nodes, coordinates, average_tet_volume);

  return (double)(shape * size);
}

/*!
  the distortion of a tet
 */
double tet_distortion(int num_nodes, const double coordinates[][3])
{
  double distortion = VERDICT_DBL_MAX;
  int number_of_gauss_points = 0;
  if (num_nodes < 10)
  {
    // for linear tet, the distortion is always 1 because
    // straight edge tets are the target shape for tet
    return 1.0;
  }
  else if (num_nodes >= 10)
  {
    // use four integration points for quadratic tet
    number_of_gauss_points = 4;
  }
  num_nodes = 10;

  int number_dims = 3;
  int total_number_of_gauss_points = number_of_gauss_points;
  // use is_tri=1 to indicate this is for tet in 3D
  int is_tri = 1;

  double shape_function[maxTotalNumberGaussPoints][maxNumberNodes];
  double dndy1[maxTotalNumberGaussPoints][maxNumberNodes];
  double dndy2[maxTotalNumberGaussPoints][maxNumberNodes];
  double dndy3[maxTotalNumberGaussPoints][maxNumberNodes];
  double weight[maxTotalNumberGaussPoints];

  // create an object of GaussIntegration for tet
  GaussIntegration gint{};
  gint.initialize(number_of_gauss_points, num_nodes, number_dims, is_tri);
  gint.calculate_shape_function_3d_tet();
  gint.get_shape_func(shape_function[0], dndy1[0], dndy2[0], dndy3[0], weight);

  // vector xxi is the derivative vector of coordinates w.r.t local xi coordinate in the
  // computation space
  // vector xet is the derivative vector of coordinates w.r.t local et coordinate in the
  // computation space
  // vector xze is the derivative vector of coordinates w.r.t local ze coordinate in the
  // computation space
  VerdictVector xxi, xet, xze, xin;

  double jacobian, minimum_jacobian;
  double element_volume = 0.0;
  minimum_jacobian = VERDICT_DBL_MAX;

  // calculate element volume
  int ife, ja;
  for (ife = 0; ife < total_number_of_gauss_points; ife++)
  {
    xxi.set(0.0, 0.0, 0.0);
    xet.set(0.0, 0.0, 0.0);
    xze.set(0.0, 0.0, 0.0);

    for (ja = 0; ja < num_nodes; ja++)
    {
      xin.set(coordinates[ja][0], coordinates[ja][1], coordinates[ja][2]);
      xxi += dndy1[ife][ja] * xin;
      xet += dndy2[ife][ja] * xin;
      xze += dndy3[ife][ja] * xin;
    }

    // determinant
    jacobian = xxi % (xet * xze);
    if (minimum_jacobian > jacobian)
    {
      minimum_jacobian = jacobian;
    }

    element_volume += weight[ife] * jacobian;
  } // element_volume is 6 times the actual volume

  // loop through all nodes
  double dndy1_at_node[maxNumberNodes][maxNumberNodes];
  double dndy2_at_node[maxNumberNodes][maxNumberNodes];
  double dndy3_at_node[maxNumberNodes][maxNumberNodes];

  gint.calculate_derivative_at_nodes_3d_tet(dndy1_at_node, dndy2_at_node, dndy3_at_node);
  int node_id;
  for (node_id = 0; node_id < num_nodes; node_id++)
  {
    xxi.set(0.0, 0.0, 0.0);
    xet.set(0.0, 0.0, 0.0);
    xze.set(0.0, 0.0, 0.0);

    for (ja = 0; ja < num_nodes; ja++)
    {
      xin.set(coordinates[ja][0], coordinates[ja][1], coordinates[ja][2]);
      xxi += dndy1_at_node[node_id][ja] * xin;
      xet += dndy2_at_node[node_id][ja] * xin;
      xze += dndy3_at_node[node_id][ja] * xin;
    }

    jacobian = xxi % (xet * xze);
    if (minimum_jacobian > jacobian)
    {
      minimum_jacobian = jacobian;
    }
  }
  if (std::abs(element_volume) > 0.0)
  {
    distortion = minimum_jacobian / element_volume;
  }

  return fix_range(distortion);
}

double tet_inradius(int num_nodes, const double coordinates[][3])
{
  // avoid access beyond the end of the array
  if (num_nodes < 4)
  {
    return 0.;
  }

  if (num_nodes == 10)
  {
    return tet10_characteristic_length(coordinates);
  }

  // area1 (0,1,2)
  double a1 = verdict::tri_area(3, coordinates);

  // area2 (0,3,1)
  double tmp_coords[3][3];
  tmp_coords[0][0] = coordinates[0][0];
  tmp_coords[0][1] = coordinates[0][1];
  tmp_coords[0][2] = coordinates[0][2];

  tmp_coords[1][0] = coordinates[3][0];
  tmp_coords[1][1] = coordinates[3][1];
  tmp_coords[1][2] = coordinates[3][2];

  tmp_coords[2][0] = coordinates[1][0];
  tmp_coords[2][1] = coordinates[1][1];
  tmp_coords[2][2] = coordinates[1][2];

  double a2 = verdict::tri_area(3, tmp_coords);

  // area3 (0,2,3)
  tmp_coords[1][0] = coordinates[2][0];
  tmp_coords[1][1] = coordinates[2][1];
  tmp_coords[1][2] = coordinates[2][2];

  tmp_coords[2][0] = coordinates[3][0];
  tmp_coords[2][1] = coordinates[3][1];
  tmp_coords[2][2] = coordinates[3][2];

  double a3 = verdict::tri_area(3, tmp_coords);

  // area4 (1,3,2)
  tmp_coords[0][0] = coordinates[1][0];
  tmp_coords[0][1] = coordinates[1][1];
  tmp_coords[0][2] = coordinates[1][2];

  tmp_coords[1][0] = coordinates[3][0];
  tmp_coords[1][1] = coordinates[3][1];
  tmp_coords[1][2] = coordinates[3][2];

  tmp_coords[2][0] = coordinates[2][0];
  tmp_coords[2][1] = coordinates[2][1];
  tmp_coords[2][2] = coordinates[2][2];

  double a4 = verdict::tri_area(3, tmp_coords);

  double tet_volume = verdict::tet_volume(4, coordinates);

  double inradius = 3 * tet_volume / (a1 + a2 + a3 + a4);

  return inradius;
}

double tet_timestep(int num_nodes, const double coordinates[][3], double density,
  double poissons_ratio, double youngs_modulus)
{
  double char_length = 0;
  if (10 == num_nodes)
  {
    char_length = 2 * tet10_characteristic_length(coordinates);
  }
  else
  {
    char_length = 2 * tet_inradius(num_nodes, coordinates);
  }

  double M =
    youngs_modulus * (1 - poissons_ratio) / ((1 - 2 * poissons_ratio) * (1 + poissons_ratio));
  double denominator = std::sqrt(M / density);

  return char_length / denominator;
}

VerdictVector tet10_auxillary_node_coordinate(const double coordinates[][3])
{
  VerdictVector aux_node(0, 0, 0);
  for (int i = 4; i < 10; i++)
  {
    VerdictVector tmp_vec(coordinates[i][0], coordinates[i][1], coordinates[i][2]);
    aux_node += tmp_vec;
  }
  aux_node /= 6;

  return aux_node;
}

double tet10_min_inradius(const double coordinates[][3], int begin_index, int end_index)
{
  double min_tetinradius = VERDICT_DBL_MAX;

  VerdictVector auxillary_node = tet10_auxillary_node_coordinate(coordinates);

  for (int i = begin_index; i <= end_index; i++)
  {
    int subtet_conn[4];
    subtet_conn[0] = tet10_subtet_conn[i][0];
    subtet_conn[1] = tet10_subtet_conn[i][1];
    subtet_conn[2] = tet10_subtet_conn[i][2];
    subtet_conn[3] = tet10_subtet_conn[i][3];

    // get the coordinates of the nodes
    double subtet_coords[4][3];
    for (int k = 0; k < 4; k++)
    {
      int node_index = subtet_conn[k];

      if (10 == node_index)
      {
        subtet_coords[k][0] = auxillary_node.x();
        subtet_coords[k][1] = auxillary_node.y();
        subtet_coords[k][2] = auxillary_node.z();
      }
      else
      {
        subtet_coords[k][0] = coordinates[node_index][0];
        subtet_coords[k][1] = coordinates[node_index][1];
        subtet_coords[k][2] = coordinates[node_index][2];
      }
    }

    double tmp_inradius = tet_inradius(4, subtet_coords);

    if (tmp_inradius < min_tetinradius)
    {
      min_tetinradius = tmp_inradius;
    }
  }
  return min_tetinradius;
}

double tet10_characteristic_length(const double coordinates[][3])
{
  // compute auxillary node coordinate
  double min_tetinradius = tet10_min_inradius(coordinates, 0, 11);
  min_tetinradius *= 2.3;

  return min_tetinradius;
}
double calculate_tet4_outer_radius(const double coordinates[][3])
{
  verdict::VerdictVector nE[4];
  for (int i{ 0 }; i < 4; i++)
  {
    nE[i].set(coordinates[i]);
  }

  double aC = (nE[1] - nE[0]).length();
  double bC = (nE[2] - nE[0]).length();
  double cC = (nE[3] - nE[0]).length();
  double AC = (nE[3] - nE[2]).length();
  double BC = (nE[3] - nE[1]).length();
  double CC = (nE[2] - nE[1]).length();
  double VP = ((nE[1] - nE[0]) * (nE[2] - nE[0])) % (nE[3] - nE[0]) / 6;
  double outer_radius = std::sqrt((aC * AC + bC * BC + cC * CC) * (aC * AC + bC * BC - cC * CC) *
                          (aC * AC - bC * BC + cC * CC) * (-aC * AC + bC * BC + cC * CC)) /
    24 / VP;

  return outer_radius;
}

double tet10_normalized_inradius(const double coordinates[][3])
{
  double min_inradius_for_subtet_with_parent_node = tet10_min_inradius(coordinates, 0, 3);
  double min_inradius_for_subtet_with_no_parent_node = tet10_min_inradius(coordinates, 4, 11);

  double outer_radius = calculate_tet4_outer_radius(coordinates);

  double normalized_inradius_for_subtet_with_parent_node =
    6.0 * min_inradius_for_subtet_with_parent_node / outer_radius;
  double normalized_inradius_for_subtet_with_no_parent_node =
    three_times_1plussqrt3 * min_inradius_for_subtet_with_no_parent_node / outer_radius;

  double norm_inrad = std::min(normalized_inradius_for_subtet_with_parent_node,
    normalized_inradius_for_subtet_with_no_parent_node);
  return fix_range(norm_inrad);
}

double tet4_normalized_inradius(const double coordinates[][3])
{
  double tet10_coords[10][3];
  for (int i = 0; i < 4; i++)
  {
    tet10_coords[i][0] = coordinates[i][0];
    tet10_coords[i][1] = coordinates[i][1];
    tet10_coords[i][2] = coordinates[i][2];
  }

  static int eidx[6][2] = { { 0, 1 }, { 1, 2 }, { 2, 0 }, { 0, 3 }, { 1, 3 }, { 2, 3 } };
  for (int i = 4; i < 10; i++)
  {
    int i0 = eidx[i - 4][0];
    int i1 = eidx[i - 4][1];
    tet10_coords[i][0] = (coordinates[i0][0] + coordinates[i1][0]) * 0.5;
    tet10_coords[i][1] = (coordinates[i0][1] + coordinates[i1][1]) * 0.5;
    tet10_coords[i][2] = (coordinates[i0][2] + coordinates[i1][2]) * 0.5;
  }
  return tet10_normalized_inradius(tet10_coords);
}

double tet_normalized_inradius(int num_nodes, const double coordinates[][3])
{
  if (num_nodes == 4)
  {
    return tet4_normalized_inradius(coordinates);
  }
  else if (num_nodes >= 10)
  {
    return tet10_normalized_inradius(coordinates);
  }
  return 0.0;
}

double tet_mean_ratio(int /*num_nodes*/, const double coordinates[][3])
{
  const VerdictVector side0(coordinates[1][0] - coordinates[0][0],
    coordinates[1][1] - coordinates[0][1], coordinates[1][2] - coordinates[0][2]);

  const VerdictVector side2(coordinates[0][0] - coordinates[2][0],
    coordinates[0][1] - coordinates[2][1], coordinates[0][2] - coordinates[2][2]);

  const VerdictVector side3(coordinates[3][0] - coordinates[0][0],
    coordinates[3][1] - coordinates[0][1], coordinates[3][2] - coordinates[0][2]);

  const double tetVolume = calculate_tet_volume_using_sides(side0, side2, side3);
  if (std::abs(tetVolume) < VERDICT_DBL_MIN)
  {
    return 0.0;
  }

  const VerdictVector side1(coordinates[2][0] - coordinates[1][0],
    coordinates[2][1] - coordinates[1][1], coordinates[2][2] - coordinates[1][2]);

  const VerdictVector side4(coordinates[3][0] - coordinates[1][0],
    coordinates[3][1] - coordinates[1][1], coordinates[3][2] - coordinates[1][2]);

  const VerdictVector side5(coordinates[3][0] - coordinates[2][0],
    coordinates[3][1] - coordinates[2][1], coordinates[3][2] - coordinates[2][2]);

  const double side0_length_squared = side0.length_squared();
  const double side1_length_squared = side1.length_squared();
  const double side2_length_squared = side2.length_squared();
  const double side3_length_squared = side3.length_squared();
  const double side4_length_squared = side4.length_squared();
  const double side5_length_squared = side5.length_squared();

  const int sign = tetVolume < 0. ? -1 : 1;
  return sign * 12. * std::pow(3. * std::abs(tetVolume), 2. / 3.) /
    (side0_length_squared + side1_length_squared + side2_length_squared + side3_length_squared +
      side4_length_squared + side5_length_squared);
}
} // namespace verdict